อัมพวา

วันพุธที่ 23 พฤษภาคม พ.ศ. 2555

ทองคำ

        ทองคำ (อังกฤษ: gold) คือธาตุเคมีที่มีหมายเลขอะตอม 79 และสัญลักษณ์คือ Au (มาจากภาษาละตินว่า aurum) จัดอยู่ในกลุ่มธาตุโลหะมีสกุลชนิดหนึ่ง ทองคำเป็นธาตุโลหะทรานซิชันสีเหลืองทองมันวาวเนื้ออ่อนนุ่ม สามารถยืดและตีเป็นแผ่นได้ ทองคำไม่ทำปฏิกิริยากับสารเคมีส่วนใหญ่ ทองคำใช้เป็นทุนสำรองทางการเงินของหลายประเทศ ใช้ประโยชน์เป็นเครื่องประดับ งานทันตกรรม และอุปกรณ์อิเล็กทรอนิกส์

คุณสมบัติของทองคำ

         มีความแวววาวอยู่เสมอ ทองคำไม่ทำปฏิกิริยากับออกซิเจนดังนั้น เมื่อสัมผัสถูกอากาศสีของทองจะไม่หมองและไม่เกิดสนิม มีความอ่อนตัว ทองคำเป็นโลหะที่มีความอ่อนตัวมากที่สุด ด้วยทองเพียงประมาณ 2 บาท เราสามารถยืดออกเป็นเส้นลวดได้ยาวถึง 8 กิโลเมตร หรืออาจตีเป็นแผ่นบางได้ถึง 100 ตารางฟุต เป็นตัวนำไฟฟ้าที่ดี ทองคำเป็นโลหะชนิดหนึ่งที่สามารถนำไฟฟ้าได้ดี สะท้อนความร้อนได้ดี ทองคำสามารถสะท้อนความร้อนได้ดี ได้มีการนำทองคำไปฉาบไว้ที่หน้ากากหมวกของนักบินอวกาศ เพื่อป้องกันรังสีอินฟราเรด

มนุษย์รู้จักทองคำมาตั้งแต่ประมาณ 5,000 ปี เป็นความหมายแห่งความมั่งคั่ง จุดหลอมเหลว 1064 องศาเซลเซียส และจุดเดือด 2970 องศาเซลเซียส เป็นโลหะที่มีค่าที่มีความเหนียว (Ductility) และความสามารถในการขึ้นรูป (Malleability) คือจะยืดขยาย (Extend) เมื่อถูกตีหรือรีดในทุกทิศทาง โดยไม่เกิดการปริแตกได้สูงสุด ทองคำบริสุทธิ์หนัก 1 ออนซ์สามารถดึงเป็นเส้นลวดยาวได้ถึง 80 กิโลเมตร ถ้าตีเป็นแผ่นก็จะได้บางเกินกว่า 1/300,000 นิ้ว ส่วนความกว้างจะได้ถึง 9 ตารางเมตร

ทองคำบริสุทธิ์ไม่ว่องไวต่อการเกิดปฏิกิริยาเคมี จึงทนต่อการผุกร่อนและไม่เกิดสนิมกับอากาศ แต่ทำปฏิกิริยากับสารเคมีบางชนิด เช่น คลอรีน ฟลูออรีน น้ำประสานทอง

คุณสมบัติเหล่านี้ประกอบกับลักษณะภายนอกที่เป็นประกายจึงทำให้ทองคำเป็นที่หมายปองของมนุษย์มาเป็นเวลานับพันปี โดยนำมาตีมูลค่าสำหรับการแลกเปลี่ยนระหว่างประเทศและใช้เป็นวัตถุดิบที่สำคัญสำหรับวงการเครื่องประดับ

ทองคำได้รับความนิยมอย่างสูงสุดในวงการเครื่องประดับทองคำ เพราะเป็นโลหะมีค่าชนิดเดียวที่มีคุณสมบัติพื้นฐาน 4 ประการซึ่งทำให้ทองคำโดดเด่น และเป็นที่ต้องการเหนือบรรดาโลหะมีค่าทุกชนิดในโลก คือ

    งดงามมันวาว (lustre) สีสันที่สวยงามตามธรรมชาติผสานกับความมันวาวก่อให้เกิดความงามอันเป็นอมตะ ทองคำสามารถเปลี่ยนเฉดสีทองโดยการนำทองคำไปผสมกับโลหะมีค่าอื่นๆ ช่วยเพิ่มความงดงามให้แก่ทองคำได้อีกทางหนึ่ง
    คงทน (durable) ทองคำไม่ขึ้นสนิม ไม่หมอง และไม่ผุกร่อน แม้ว่ากาลเวลาจะผ่านไป 3000 ปีก็ตาม
    หายาก (rarity) ทองเป็นแร่ที่หายาก กว่าจะได้ทองคำมาหนึ่งออนซ์ (31.167 gram) ต้องถลุงก้อนแร่ที่มีทองคำอยู่เป็นจำนวนหลายตัน และต้องขุดเหมืองลึกลงไปหลายสิบเมตร จึงทำให้มีค่าใช้จ่ายที่สูง เป็นเหตุให้ทองคำมีราคาแพงตามต้นทุนในการผลิต
    นำกลับไปใช้ได้ (reuseable) ทองคำเหมาะสมที่สุดต่อการนำมาทำเป็นเครื่องประดับเพราะมีความเหนียวและอ่อนนิ่มสามารถนำมาทำขึ้นรูปได้ง่าย อีกทั้งยังสามารถนำกลับมาใช้ใหม่โดยการทำให้บริสุทธิ์ (purified) ด้วยการหลอมได้อีกโดยนับครั้งไม่ถ้วน



 

อะลูมิเนียม

           อะลูมิเนียม (ภาษาอังกฤษสะกดได้ว่า aluminium หรือ aluminum ในอเมริกาเหนือ) คือธาตุเคมีในตารางธาตุที่มีสัญลักษณ์ Al และมีเลขอะตอม 13 เป็นโลหะทรานซิชันที่มันวาวและอ่อนดัดง่าย ในธรรมชาติอะลูมิเนียมพบในรูปแร่บอกไซต์เป็นหลัก และมีคุณสมบัติเด่น คือ ต่อต้านปฏิกิริยาออกซิเดชันได้ดี (เนื่องจากปรากฏการณ์ passivation) แข็งแรง และน้ำหนักเบา มีการใช้อะลูมิเนียมในอุตสาหกรรมหลายประเภท เพื่อสร้างผลิตภัณฑ์ต่าง ๆ มากมาย และอะลูมิเนียมสำคัญต่อเศรษฐกิจโลกอย่างมาก ชิ้นส่วนโครงสร้างที่ผลิตจากอะลูมิเนียมสำคัญต่ออุตสาหกรรมอากาศยาน และสำคัญในด้านอื่น ๆ ของการขนส่งและการสร้างอาคาร ซึ่งต้องการน้ำหนักเบา ความทนทาน และความแข็งแรง

คุณสมบัติ

             อะลูมิเนียมเป็นโลหะที่อ่อนและเบาที่มีลักษณะไม่เป็นเงา เนื่องจากเกิดการออกซิเดชันชั้นบาง ๆ ที่เกิดขึ้นเร็วเมื่อสัมผัสกับอากาศ โลหะอะลูมิเนียมไม่เป็นสารพิษ ไม่เป็นแม่เหล็ก และไม่เกิดประกายไฟ อะลูมิเนียมบริสุทธิ์มีแรงต้านการดึงประมาณ 49 ล้านปาสกาล (MPa) และ 400 MPa ถ้าทำเป็นโลหะผสม อะลูมิเนียมมีความหนาแน่นเป็น 1/3 ของเหล็กกล้าและทองแดง อ่อน สามารถดัดได้ง่าย สามารถกลึงและหล่อแบบได้ง่าย และมีความสามารถต่อต้านการกร่อนและความทนเนื่องจากชั้นออกไซด์ที่ป้องกัน พื้นหน้ากระจกเงาที่เป็นอะลูมิเนียมมีการสะท้อนแสงมากกว่าโลหะอื่น ๆ ในช่วงความยาวคลื่น 200-400 nm (UV) และ 3000-10000 nm (IR ไกล) ส่วนในช่วงที่มองเห็นได้ คือ 400-700 nm โลหะเงินสะท้อนแสงได้ดีกว่าเล็กน้อย และในช่วง 700-3000 (IR ใกล้) โลหะเงิน ทองคำ และทองแดง สะท้อนแสงได้ดีกว่า อะลูมิเนียมเป็นโลหะที่ดัดได้ง่ายเป็นอันดับ 2 (รองจากทองคำ) และอ่อนเป็นอันดับที่ 6 อะลูมิเนียมสามารถนำความร้อนได้ดี จึงเหมาะสมที่จะทำหม้อหุงต้มอาหาร


ชิ้นอะลูมิเนียมยาว 15 cm เทียบขนาดกับเหรียญเซ็นต์สหรัฐฯ  

***ที่มา ::  http://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%B0%E0%B8%A5%E0%B8%B9%E0%B8%A1%E0%B8%B4%E0%B9%80%E0%B8%99%E0%B8%B5%E0%B8%A2%E0%B8%A1

 

ของเหลว

ของเหลว (อังกฤษ: Liquid) เป็น สถานะ ของ ของไหล ซึ่ง ปริมาตร จะถูกจำกัดภายใต้สภาวะคงที่ของ อุณหภูมิ และ ความดัน และรูปร่างของมันจะถูกกำหนดโดยภาชนะที่บรรจุมันอยู่ ยิ่งไปกว่านั้นของเหลวยังออกแรงกดดันต่อภาชนะด้านข้างและบางสิ่งบางอย่างในตัวของของเหลวเอง ความกดดันนี้จะถูกส่งผ่านไปทุกทิศทาง

ถ้าของเหลวอยู่ในระเบียบของสนามแรงโน้มถ่วง ความดัน pที่จุดใดๆ สามารถแสดงเป็นสูตรทางคณิตศาสตร์ได้ดังนี้

        p=\rho gz \,

ที่ซึ่ง \rho เป็น ความหนาแน่น ของของเหลว (ซึ่งกำหนดให้คงที่) และ z คือความลึก ณ จุดใต้พื้นผิวของเหลวนั้น สังเกตว่าในสูตรนี้กำหนดให้ความดันที่ผิวบนเท่ากับ 0 และไม่ต้องคำนึงถึง ความตึงผิวของเหลวมีลักษณะเฉพาะของ แรงตึงผิว (surface tension) และ แรงยกตัว (capillarity) โดยทั่วไปของเหลวจะขยายตัวเมื่อถูกความร้อนและหดตัวเมื่อถูกความเย็น วัตถุที่จมอยู่ในของเหลวจะมีปรากฏการณ์ที่เรียกว่า แรงลอยตัว (buoyancy)

ของเหลวเมื่อได้รับความร้อนจนถึง จุดเดือด จะเปลี่ยนสถานะเป็น ก๊าซ และเมื่อทำให้เย็นจนถึง จุดเยือกแข็งมันก็จะเปลี่ยนสถานะเป็น ของแข็ง โดย การกลั่นแยกส่วน (fractional distillation) ของเหลวจะถูกแยกจากกันและกันโดย การระเหย (vaporization) ที่ จุดเดือด ของของเหลวแต่ละชนิด การเกาะติด (Cohesion) ระหว่าง โมเลกุล ของของเหลวจะไม่เพียงพอที่จะป้องกันจาก การระเหย จากผิวของมันได้

เป็นที่น่าสังเกตว่า แก้ว ที่อุณหภูมิปกติมันจะไม่เป็น "ของเหลวเย็นยิ่งยวด" (supercooled liquid) แต่มันจะเป็นของแข็ง

รูปทรงของของเหลวเปลี่ยนไปตามภาชนะที่บรรจุ    

ที่มา :: http://th.wikipedia.org/wiki/%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E0%B8%AB%E0%B8%A5%E0%B8%A7

ผลึก

ผลึก (อังกฤษ: crystal) เป็นของแข็งที่มีองค์ประกอบเป็นอะตอม โมเลกุล หรือ ไอออนซึ่งอยู่รวมกันอย่างมีระเบียบ เป็นรูปแบบที่ซ้ำกันและแผ่ขยายออกไปในเนื้อที่สามมิติ โดยทั่วไปสสารที่เป็น ของเหลว จะเกิดผลึกได้เมื่ออยู่ภายใต้กระบวนการ โซลิดิฟิเคชัน (solidification) ภายใต้สภาวะที่สมบูรณ์ผลที่ได้จะเป็น ผลึกเดี่ยว (single crystal) ที่ซึ่งทุกอะตอมในของแข็งมีความพอดีที่จะอยู่ใน แลตทิช เดียวกัน หรือ โครงสร้างผลึกเดียวกัน แต่โดยทั่วไปจะเกิดหลายรูปแบบของผลึกในระหว่างโซลิดิฟิเคชัน ทำให้เกิดของแข็งที่เรียกว่า พอลิคริสตัลลีน (polycrystalline solid) ตัวอย่าง เช่น โลหะ ส่วนใหญ่ที่พบเห็นในชีวิตประจำวันจะเป็น พอลิคริสตัล (polycrystals) ผลึกที่โตคู่กันอย่างสมมาตร จะเกิดเป็นผลึกที่เรียกว่า ผลึกแฝด (crystal twins) โครงสร้างผลึกจะขึ้นอยู่กับสารเคมี สภาวะแวดล้อมขณะเกิดการแข็งตัวและความกดดันขณะนั้น กระบวนการเกิดโครงสร้างผลึกเราเรียกว่าคริสตัลไลเซชัน (crystallization)
Bismuth Crystal

ขณะที่กระบวนการเย็นลงการเกิดผลึกก็ยังมีอยู่ แต่เมื่อของเหลวเย็นจนแข็งสถานะการเกิดผลึกจะไม่มีเรียกว่า นอนคริสตัลลีนสเตต (noncrystalline state) อธิบายได้ว่าการที่ของเหลวเย็นจนแข็งอะตอมของของเหลวไม่สามารถเคลื่อนไหวเพื่อการจัดเรียงเข้า แลตทิชไซต์ ตะกอนที่ได้จะไม่เป็นผลึกเรียกว่าวัสดุที่ไม่ใช่ผลึก (noncrystalline material) ซึ่งโครงสร้างของมันจะไม่เป็นระเบียบพิสัยยาว (long-range order) และเรียกว่าเป็นวัสดุ อสัณฐาน (amorphous), คล้ายแก้ว (vitreous),หรือ กระจก หรืออาจเรียกอีกอย่างว่าเป็น ของแข็งอสัณฐาน (amorphous solid) ถึงแม้จะมีความแตกต่างกันระหว่างของแข็งและแก้ว แต่ก็เป็นที่น่าสังเกตอย่างมากว่ากระบวนการเกิดแก้วจะไม่ปล่อย ความร้อนแฝงของการหลอม (latent heat of fusion) อันนี้เป็นเหตุผลอันหนึ่งที่ทำให้นักวิทยาศาสตร์พิจารณาวัสดุแก้ว (glassy materials) ว่าเป็น ของเหลวที่มี ความหนืด (viscosity) มากกว่าเป็นของแข็ง ดูรายละเอียดเพิ่มเติมได้ใน แก้ว (glass)


สารประกอบ

สารประกอบ เป็นสารเคมีที่เกิดจากธาตุเคมีตั้งแต่สองตัวขึ้นไปมารวมตัวกันโดย พันธะเคมีด้วยอัตราส่วนของส่วนประกอบที่แน่นอน ตัวอย่าง เช่น ไดไฮโรเจนโมน็อกไซด์ หรือ น้ำ มีสูตรเคมีคือ H2Oซึ่งเป็นสารที่ประกอบด้วย ไฮโดรเจน 2 อะตอม และ ออกซิเจน 1 อะตอม

ในสารประกอบอัตราส่วนของส่วนประกอบจะต้องคงที่และตัวชี้วัดความเป็นสารประกอบที่สำคัญคือ คุณสมบัติทางกายภาพ ซึ่งจะแตกต่างจาก ของผสม(mixture) หรือ อัลลอย (alloy) เช่น ทองเหลือง(brass) ซูเปอร์คอนดักเตอร์ YBCO, สารกึ่งตัวนำ อะลูมิเนียม แกลเลียม อาร์เซไนด์(aluminium gallium arsenide) หรือ ซ็อกโกแลต (chocolate) เพราะเราสามารถกำหนดอัตราส่วนของ ของผสมได้

ตัวกำหนดคุณลักษณะเฉพาะของสารประกอบที่สำคัญคือ สูตรเคมี (chemical formula) ซึ่งจะแสดงอัตราส่วนของอะตอมในสารประกอบนั้นๆ และจำนวนอะตอมในโมเลกุลเดียว เช่น สูตรเคมีของ อีทีน (ethene) จะเป็นC2H4 ไม่ใช่ CH2) สูตรไม่ได้ระบุว่าสารประกอบประกอบด้วยโมเลกุล เช่น โซเดียมคลอไรด์ (เกลือแกง, NaCl) เป็น สารประกอบไอออนิก (ionic compound)

ประเภทของสารประกอบ

  •      กรด
  •     เบส
  •     สารประกอบไอออนิก (ionic compound)
  •     เกลือ
  •     ออกไซด์
  •     สารประกอบอินทรีย์
 

ประเภทสารประกอบจำแนกตามพันธะภายในสารประกอบ

พันธะโคเวเลนต์ (Covalent Bond) เป็นพันธะที่มีการใช้อิเล็กตรอนวงนอกสุดร่วมกันเพื่อให้ครบตามกฎออกเตต (Octet's Rule) คือมีอิเล็กตรอนวงนอกสุดครบ 8 ตัว ซึ่งยังมีพันธะโคเวเลนต์อีกชนิดหนึ่งคือ พันธะโคออร์ดิเนตโคเวเลนต์ (Coordinate Covalent Bond) ซึ่งเกิดจากการที่อะตอมหนึ่งให้อิเล็กตรอนทั้ง 2 ตัวแก่อิเล็กตรอนอีกตัวหนึ่งใช้ร่วมกัน สารประกอบเหล่านี้เรียกว่า สารประกอบโคเวเลนต์ (Covalent Compound)
    พันธะไอออนิก (Ionid Bond) เป็นพันธะที่เกิดจากการเสียและรับอิเล็กตรอนของอะตอมและเกิดแรงทางไฟฟ้าซึ่งกันและกันระหว่างไอออนบวกและไอออนลบ เกิดเป็นโครงผลึกขนาดยักษ์ ไม่มีโมเลกุล ซึ่งไอออนบวกและไอออนลบนี้จะเป็นอะตอมหรือกลุ่มอะตอมก็ได้ สารประกอบเหล่านี้เรียกว่า สารประกอบไอออนิก (Ionic Compound)
    พันธะโครงผลึกร่างตาข่าย เป็นพันธะที่แข็งแรงที่สุด และเป็นพันธะที่ไม่มีโมเลกุล พบในสารประเภท ทราย คาร์โบรันดัม เพชร แกรไฟต์ เป็นต้น





***ที่มา http://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%B2%E0%B8%A3%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%81%E0%B8%AD%E0%B8%9A%E0%B9%80%E0%B8%84%E0%B8%A1%E0%B8%B5


วันจันทร์ที่ 30 เมษายน พ.ศ. 2555

ธาตุกัมมันตรังสี

          ในปี พ.ศ. 2439  อองตวน  อองรี  เบ็กเคอเรล (Antonine Henri Becquerel)  นักวิทยาศาสตร์ชาวฝรั่งเศสได้พบว่าแผ่นฟิล์มถ่ายรูปที่ห่อหุ้มด้วยกระดาษดำและเก็บรวมไว้กับสารประกอบยูเรเนียมจะมีลักษณะเหมือนถูกแสงสว่าง  เขาจึงได้ทดลองเก็บแผ่นฟิล์มไว้กับสารประกอบของยูเรเนียมชนิดอื่น ๆ ดูบ้าง  ซึ่งก็พบว่าผลที่เกิดขึ้นเป็นเช่นเดียวกัน  ดังนั้นเบ็กเคอเรสจึงได้สรุปว่า  เหตุการณ์เช่นนี้เกิดขึ้นเนื่องจากธาตุยูเรเนียมมีสมบัติในการแผ่รังสีออกมาได้
          หลังจากนั้น ปีแอร์ คูรี  และ  มารี คูรี (Pierre Curie and Marie Curie)  นักวิทยาศาสตร์คู่สามีภรรยาชาวฝรั่งเศส  ได้ค้นพบเพิ่มเติมว่า  ธาตุยูเรเนียมไม่ได้เป็นธาตุเพียงชนิดเดียวที่สามารถแผ่รังสีออกมาได้  แต่ยังมีธาตุชนิดอื่น ๆ ที่สามารถแผ่รังสีออกมาได้เช่นเดียวกัน  เช่น  ธาตุพอลโลเนียม (Po),  เรเดียม (Ra),  และทอเรียม (Th)  เป็นต้น  ต่อมานักวิทยาศาสตร์ได้เรียกรังสีที่แผ่ออกมาจากธาตุต่าง ๆ ว่า  กัมมันตภาพรังสี  และเรียกธาตุต่าง ๆ ที่มีสมบัติในการแผ่รังสีว่า  ธาตุกัมมันตรังสี
          การแผ่รังสีของธาตุกัมมันตรังสีเหล่านี้เกิดขึ้นในไอโซโทปของธาตุที่มีจำนวนนิวตรอนมากกว่าจำนวนโปรตอนมาก  ทำให้นิวเคลียสของธาตุไม่เสถียรจึงต้องมีการเปลี่ยนแปลงไปเป็นธาตุที่มีความเสถียรมากขึ้น  โดยการสลายตัวเองเพื่อปล่อยอนุภาคภายในนิวเคลียสออกมาในรูปของการแผ่รังสี  การแผ่รังสีของธาตุเป็นปรากฏการณ์ธรรมชาติ  โดยพบว่าธาตุต่าง ๆ ที่อยู่ในธรรมชาติที่มีเลขอะตอมสูงกว่า 83 ส่วนใหญ่จะสามารถแผ่รังสีได้ทั้งสิ้น  ตัวอย่างเช่น  ธาตุเรเดียม,  ยูเรเนียม,  ทอเรียม  เป็นต้น
          การสลายตัวของธาตุกัมมันตรังสีจะเกิดขึ้นได้โดยอะตอมของธาตุมีการปลดปล่อยองค์ประกอบและพลังงานที่อยู่ภายในอะตอมออกมา  ทำให้โครงสร้างของอะตอมเปลี่ยนแปลงไป  โดยองค์ประกอบและพลังงานของธาตุที่ถูกปลดปล่อยออกมานั้นจะแผ่ออกมาจากธาตุในรูปของรังสีต่าง ๆ ซึ่งสามารถแบ่งได้เป็น 3 ชนิด  คือ  รังสีแอลฟา,  รังสีบีตา  และรังสีแกมมา  ซึ่งรังสีต่าง ๆ จะมีลักษณะและสมบัติที่แตกต่างกัน  ดังนี้
          1.  รังสีแอลฟา (alpha)  เป็นอนุภาคที่มีสมบัติเหมือนนิวเคลียสของอะตอมฮีเลียม  คือเป็นอนุภาคซึ่งมีโปรตอนและนิวตรอนอย่างละ 2 อนุภาค  แต่ไม่มีอิเล็กตรอน  จึงมีประจุบวก 2 สามารถเบี่ยงเบนในสนามไฟฟ้าเข้าหาขั้วลบ  เป็นรังสีที่มีอำนาจการทะลุทะลวงต่ำ
          2.  รังสีบีตา (beta)  เป็นอนุภาคที่มีประจุลบ  มีคุณสมบัติเหมือนอิเล็กตรอน  จึงสามารถเบี่ยงเบนในสนามไฟฟ้าเข้าหาขั้วบวก  รังสีบีตามีอำนาจการทะลุทะลวงสูงกว่ารังสีแอลฟาประมาณ 100 เท่า  มีความเร็วในการเคลื่อนที่สูงกว่ารังสีแอลฟา  และสามารถเคลื่อนที่ไปได้ไกลกว่ารังสีแอลฟา
          3.  รังสีแกมมา (gamma)  มีคุณสมบัติเป็นคลื่นแม่เหล็กไฟฟ้า (Electromagnetic Wave)  ที่มีความยาวคลื่นสั้นมาก  ไม่มีประจุและไม่มีมวล  จึงไม่มีการเบี่ยงเบนในสนามไฟฟ้า  มีอำนาจการทะลุทะลวงสูงกว่ารังสีบีตามาก  เกิดจากการที่ธาตุแผ่รังสีแอลฟาและแกมมาออกมา  แต่นิวเคลียสของธาตุยังไม่เสถียร  ยังมีระดับพลังงานที่สูงอยู่  จึงต้องปลดปล่อยพลังงานออกมาในรูปของคลื่นแม่เหล็กไฟฟ้าเพื่อลดระดับพลังงาน  โดยรังสีแกมมาจะมีความเร็วในการเคลื่อนที่สูงมากจนมีค่าใกล้เคียงกับความเร็วแสง
          1.  ครึ่งชีวิตของธาตุ (Half life)
          เรารู้แล้วว่ารังสีที่แผ่ออกมาจากธาตุกัมมันตรังสีเกิดจากนิวเคลียสในอะตอมของธาตุซึ่งไม่เสถียร  จึงต้องมีการสลายตัวและแผ่รังสีออกมา  เพื่อเปลี่ยนไปเป็นอะตอมที่มีเสถียรภาพมากขึ้น  เมื่อธาตุกัมมันตรังสีแผ่รังสีออกมาแล้วจะเกิดการสลายตัวลดปริมาณลงไปด้วย  โดยนักวิทยาศาสตร์เรียกระยะเวลาที่ธาตุกัมมันตรังสีสลายตัวไปจนเหลือครึ่งหนึ่งของปริมาณเดิมว่า  ครึ่งชีวิต (Half life)  ตัวอย่างเช่น  ธาตุซัลเฟอร์ -35  มีครึ่งชีวิต 87 วัน  ในการสลายตัวเหลือ 4 กรัม  และใช้เวลาอีก 87 วัน  ในการสลายตัวจนเหลือ 2 กรัม  เป็นต้น
          2.  ประโยชน์ของธาตุกัมมันตรังสี
          ความสามารถในการปลดปล่อยพลังงาน  และรังสีที่มีพลังงานและมีอำนาจทะลุทะลวงของธาตุกัมมันตรังสีได้ถูกนำไปประยุกต์ใช้ให้เกิดประโยชน์ในด้านต่าง ๆ มากมายทั้งในด้านการแพทย์  การเกษตร  อุตสาหกรรม  รวมจนถึงด้านธรณีวิทยาการหาอายุของวัตถุต่าง ๆ โดยธาตุกัมมันตรังสีที่มีการใช้ประโยชน์กันอย่างกว้างขวาง  ได้แก่
                    2.1  ยูเรเนียม-235 (U-235)  ใช้สำหรับเป็นเชื้อเพลิงในโรงไฟฟ้าพลังนิวเคลียร์  ใช้ในอุตสาหกรรมการผลิตเครื่องบินและยานอวกาศ  และใช้ในการผลิตรังสีเอ็กซ์ (X-ray)  ซึ่งมีพลังงานสูง
                    2.2  โคบอลต์-60 (Co-60)  เป็นธาตุกัมมันตรังสีที่สามารถแผ่กัมมันตรังสีชนิดแกมมาซึ่งมีผลในการยับยั้งการเจริญเติบโตของเซลล์ได้  จึงมีการนำมาใช้ในการยับยั้งการเจริญเติบโตเชื้อจุลินทรีย์ในอาหาร  ผักและผลไม้  และนำมาใช้ในการรักษาโรคมะเร็ง
                    2.3  คาร์บอน-14 (C-14)  เป็นธาตุกัมมันตรังสีที่สามารถพบได้ในวัตถุต่าง ๆ เกือบทุกชนิดบนโลก  จึงสามารถนำระยะเวลาครึ่งชีวิตของธาตุนี้มาใช้ในการคำนวณหาอายุของวัตถุโบราณ  อายุของหินและเปลือกโลกและอายุของซากฟอสซิลต่าง ๆ ได้  (C-14  มีครึ่งชีวิตประมาณ 5,730 ปี)
                    2.4  ฟอสฟอรัส-32 (P-32)  เป็นสารประกอบกัมมันตรังสีที่สามารถละลายน้ำได้  มีระยะเวลาครึ่งชีวิตประมาณ 14.3 วัน  ทางการแพทย์นำมาใช้ในการรักษาโรคมะเร็งของเม็ดโลหิตขาว (ลิวคีเมีย)  โดยให้รับประทานหรือฉีดเข้าในกระแสโลหิต  นอกจากนี้ยังสามารถใช้ในการตรวจหาเซลล์มะเร็ง  และตรวจหาปริมาณโลหิตของผู้ที่จะเข้ารับการผ่าตัด
          3.  อันตรายจากธาตุกัมมันตรังสี
          อันตรายจากธาตุกัมมันตรังสีเกิดขึ้นได้  เนื่องจากหากร่างกายของสิ่งมีชีวิตได้รับกัมมันตรังสีในปริมาณที่มากเกินไปจะทำให้โมเลกุลของน้ำ  สารอินทรีย์และสารอนินทรีย์ต่าง ๆ ในร่างกายเสียสมดุล  ทำให้เกิดความเสียหายต่อเซลล์ในร่างกาย  ซึ่งจะทำให้สิ่งมีชีวิตเกิดความเจ็บป่วย  หรือหากได้รับในปริมาณมากก็อาจทำให้เสียชีวิตได้  ดังนั้นผู้ปฏิบัติงานที่เกี่ยวข้องกับรังสีจึงจะต้องมีอุปกรณ์ที่ช่วยป้องกันอันตรายจากรังสี  และมีการกำหนดระยะเวลาในการทำงานเพื่อไม่ให้สัมผัสกับรังสีเป็นเวลานานเกินไป
          ปริมาณรังสีที่ส่งผลกระทบต่อร่างกายมนุษย์
                    2.2  มิลลิซีเวิร์ด                              เป็นระดับรังสีปกติในธรรมชาติ  ที่มนุษย์แต่ละคนได้รับใน 1 ปี
                    5     มิลลิซีเวิร์ด                              เป็นเกณฑ์รังสีสูงสุดที่อนุญาตให้บุคคลทั่วไปรับได้ใน 1 ปี
                    50   มิลลิซีเวิร์ด                              เป็นเกณฑ์สูงสุดที่อนุญาติให้ผู้ปฏิบัติงานที่เกี่ยวข้องกับรังสีรับได้ใน 1 ปี
                    250 มิลลิซีเวิร์ด                              เป็นระดับที่ไม่ทำให้ร่างกายปรากฏอาการผิดปกติ  ทั้งในระยะสั้นและในระยะยาว
                    500 มิลลิซีเวิร์ด                              ทำให้ปริมาณเม็ดเลือดขาวลดลงเล็กน้อย
                    1,000 มิลลิซีเวิร์ด                           ทำให้เกิดอาการคลื่นเหียน  อ่อนเพลีย  และมีปริมาณเม็ดเลือดขาวลดลง
                    3,000 มิลลิซีเวิร์ด                           ทำให้เกิดอาการอ่อนเพลีย  อาเจียน  ท้องเสีย  เม็ดเลือดขาวลดลง  ผมร่วง  เบื่ออาหาร  ตัวซีด
                                                                     คอแห้ง  มีไข้  และอาจเสียชีวิตได้ภายใน 3-6 สัปดาห์
                    6,000 มิลลิซีเวิร์ด                           ทำให้เกิดอาการอ่อนเพลีย  อาเจียน  ท้องเสีย  ท้องร่วงภายใน 1-2 ชั่วโมง  เม็ดเลือดลดลงอย่าง
                                                                     รวดเร็ว  ผมร่วง  มีไข้  อักเสบบริเวณปากและลำคออย่างรุ่นแรงและมีโอกาสเสียชีวิตได้ถึง 50% 
                                                                     ภายใน 2-6 สัปดาห์
                    10,000 มิลลิซีเวิร์ด                         ทำให้เกิดอาการอ่อนเพลีย  อาเจียน  ท้องเสีย  ท้องร่วงภายใน 1-2 ชั่วโมง  เม็ดเลือดลดลงอย่าง
                                                                     รวดเร็ว  ผมร่วง  มีไข้  อักเสบบริเวณปากและลำคออย่างรุ่นแรง  ผิวหนังพองบวม  ผมร่วง  และ
                                                                     เสียชีวิตภายใน 2-3 สัปดาห์

         
ที่มาและได้รับอนุญาตจาก :
พงศธร  นันทธเนศ  และสุนทร  ภูรีปรีชาเลิศ. สารและสมบัติของสาร ม.4 - ม.6. พิมพ์ครั้งที่ 1. กรุงเทพฯ : อักษรเจริญทัศน์.
http://www.trueplookpanya.com/true/knowledge_detail.php?mul_content_id=3029

ตารางธาตุในปัจจุบัน

ตารางธาตุในปัจจุบัน
เนื่องจากปัจจุบันนักเคมีพบว่า การจัดเรียงตัวของอิเล็กตรอนในอะตอมของธาตุมีส่วนสัมพันธ์กับสมบัติต่าง ๆ ของธาตุ กล่าวคือ ถ้าเรียงลำดับธาตุตามเลขอะตอมจากน้อยไปหามาก จะพบว่าธาตุที่มีสมบัติคล้ายคลึงกันเป็นช่วง ๆ ตามลักษณะของการจัดเรียงอิเล็กตรอนในอะตอมของธาตุนั้น ดังนั้นในปัจจุบันจึงจัดตารางธาตุโดยเรียงตามเลขอะตอมจากน้อยไปมาก ดังในรูปที่ 5.13


รูปที่ 5.13 ตารางธาตุในปัจจุบัน
ตารางธาตุในรูปที่ 5.13 เป็นแบบที่ใช้กันอยู่มากในปัจจุบัน แบ่งธาตุในแนวตั้งออกเป็น 18 แถวหรือ 18 หมู่ โดยธาตุทั้งหมด 18 แถว แบ่งเป็น 2 กลุ่มใหญ่ ๆ คือกลุ่ม A และ B กลุ่ม A มี 8 หมู่ คือหมู่ IA ถึง VIIIA ส่วนกลุ่ม B ซึ่งอยู่ระหว่างหมู่ IIA และ IIIA มี 8 หมู่เช่นเดียวกัน คือ หมู่ IB ถึง VIIIB (แต่มี 10 แนวตั้ง) เรียกธาตุกลุ่ม B ว่า ธาตุทรานซิชัน
ธาตุในแต่ละหมู่ ของกลุ่ม A ถ้ามีสมบัติคล้ายกันจะมีชื่อเรียกเฉพาะหมู่ เช่น
ธาตุหมู่ IA เรียกว่า โลหะอัลคาไล (alkali metal) ได้แก่ Li , Na , K , Rb , Cs , Fr
ธาตุหมู่ IIA เรียกว่า โลหะอัลคาไลน์เอิร์ท (alkaline earth) ได้แก่ Be Mg Ca Sr Ba Ra
ธาตุหมู่ VIIA เรียกว่า ธาตุเฮโลเจน (halogen) ได้แก่ F Cl Br I At
ธาตุหมู่ที่ VIIIA เรียกว่า ก๊าซเฉื่อย (Inert gas) ได้แก่ He Ne Ar Kr Xe Rn
สำหรับการแบ่งธาตุเป็นคาบ ธาตุทั้งหมดในตารางธาตุแบ่งเป็น 7 คาบ ซึ่งในแต่ละคาบอาจจะมีจำนวนธาตุไม่เท่ากัน เช่น
สำหรับคาบต่าง ๆ ในตารางธาตุแบ่งเป็น 7 คาบดังนี้
คาบที่ 1 มี 2 ธาตุ คือ H , He
คาบที่ 2 มี 8 ธาตุ คือ ตั้งแต่ Li ถึง Ne
คาบที่ 3 มี 8 ธาตุ คือ ตั้งแต่ Na ถึง Ar
คาบที่ 4 มี 18 ธาตุ คือ ตั้งแต่ K ถึง Kr
คาบที่ 5 มี 18 ธาตุ คือ ตั้งแต่ Rb ถึง Xe
คาบที่ 6 มี 32 ธาตุ คือ ตั้งแต่ Cs ถึง Rn
คาบที่ 7 มี 19 ธาตุ คือ ตั้งแต่ Fr ถึง Ha
รวมทั้งหมด 105 ธาตุ เป็นก๊าซ 11 ธาตุ คือ H , N , O , F , Cl , He , Ne , Ar , Kr , Xe และ Rn เป็นของเหลว 5 ธาตุ คือ Cs , Fr , Hg , Ga และ Br ที่เหลือเป็นของแข็ง
สำหรับ 2 แถวล่างเลขอะตอม 58 - 71 และ 90 - 103 เป็นธาตุกลุ่มย่อยที่แยกมาจากหมู่ IIIB ในคาบที่ 6 และ 7 เรียกธาตุในกลุ่มย่อยนี้รวม ๆ ว่า กลุ่มธาตุเลนทาไนด์ และกลุ่มธาตุแอกทิไนด์
นอกจากนี้เมื่อพิจารณาธาตุหมู่ IIIA ไปทางขวามือ จะพบเส้นหนักหรือเส้นทึบเป็นแบบขั้นบันได เส้นหนักนี้จะเป็นเส้นแบ่งกลุ่มธาตุโลหะและอโลหะ กล่าวคือ ธาตุทางขวาของเส้นขั้นบันไดจะเป็นอโลหะ ธาตุทางซ้ายมือของเส้นขั้นบันไดจะเป็นโลหะ ธาตุที่อยู่ชิดกับเส้นขั้นบันได เป็นธาตุกึ่งโลหะ ซึ่งมีทั้งสมบัติของโลหะและอโลหะ เช่น ธาตุ B , Si , Ge , As , Sb , Te